Thanks! It is the branch gpu-codegen-upstream.
By replacing the new hardware environment, the problems mentioned above have been removed from the NVIDIA V100 device in CUDA10.3.
But when I compiled and built according to the github workflow, I encountered a new problem.
According to my understanding, it occurred when the GPU module was finally converted. The following is the error report and related tracking information. I don’t know how to deal with it. Is there any way to track bugs for the mlir-opt tool?I haven’t modified any source code
../../../build-mlir/bin/mlir-opt matmul_opt_final.mlir -mlir-print-stacktrace-on-diagnostic
-pass-pipeline='gpu.module(convert-gpu-to-nvvm{index-bitwidth=32},
gpu-to-cubin{chip=sm_70 max-reg-per-thread=255 cu-jit-opt-level=4})'
-gpu-to-llvm | nsys profile --force-overwrite true -o gpu ../../../build-mlir/bin/mlir-cpu-runner -O3 ../../../build-mlir/lib --entry-point-result=void
> full_pipe.out 2> dump_.txt
**Error1:**
matmul_opt_final.mlir:92:3: error: cuLinkAddData( linkState, CUjitInputType::CU_JIT_INPUT_PTX, const_cast<void *>(static_cast<const void *>(isa.c_str())), isa.length(), kernelName.c_str(), 2, extraJitOptions, extraJitOptionsVals )
failed with error code a PTX JIT compilation failed[ptxas application ptx input, line 1096;
fatal : Parsing error near '-': syntax error
ptxas fatal : Ptx assembly aborted due to errors]
gpu.module @main_kernel {
**Error2:**
matmul_opt_final.mlir:483:3: error: cuLinkAddData( linkState, CUjitInputType::CU_JIT_INPUT_PTX, const_cast<void *>(static_cast<const void *>(isa.c_str())), isa.length(), kernelName.c_str(), 2, extraJitOptions, extraJitOptionsVals )
failed with error code a PTX JIT compilation failed[ptxas application ptx input, line 192;
fatal : Parsing error near '-': syntax error
ptxas fatal : Ptx assembly aborted due to errors]
gpu.module @initC_kernel {
**Error1 Trace informations:**
matmul_opt_final.mlir:92:3: note: diagnostic emitted with trace:
#0 0x00007f13cc0b2973 llvm::sys::PrintStackTrace(llvm::raw_ostream&, int) (/home/rice/mlir/mlir-project/llvm-project-public-gpu-codegen-upstream/build-mlir/bin/../lib/libLLVMSupport.so.13git+0x196973)
#1 0x00007f13cc63ff43 emitDiag(mlir::Location, mlir::DiagnosticSeverity, llvm::Twine const&) Diagnostics.cpp:0:0
#2 0x00007f13cc63fdf1 mlir::emitError(mlir::Location, llvm::Twine const&) (/home/rice/mlir/mlir-project/llvm-project-public-gpu-codegen-upstream/build-mlir/bin/../lib/libMLIRIR.so.13git+0x8bdf1)
#3 0x00007f13d50963ab emitCudaError(llvm::Twine const&, char const*, cudaError_enum, mlir::Location) SerializeToCubin.cpp:0:0
#4 0x00007f13d5095ed7 (anonymous namespace)::SerializeToCubinPass::serializeISA(std::string const&) SerializeToCubin.cpp:0:0
#5 0x00007f13d509356b mlir::gpu::SerializeToBlobPass::runOnOperation() (/home/rice/mlir/mlir-project/llvm-project-public-gpu-codegen-upstream/build-mlir/bin/../lib/libMLIRGPUTransforms.so.13git+0x2456b)
#6 0x00007f13cfd44998 mlir::detail::OpToOpPassAdaptor::run(mlir::Pass*, mlir::Operation*, mlir::AnalysisManager, bool, unsigned int) (/home/rice/mlir/mlir-project/llvm-project-public-gpu-codegen-upstream/build-mlir/bin/../lib/libMLIRPass.so.13git+0xe998)
#7 0x00007f13cfd44ea3 mlir::detail::OpToOpPassAdaptor::runPipeline(llvm::iterator_range<llvm::pointee_iterator<std::unique_ptr<mlir::Pass, std::default_delete<mlir::Pass> >*, mlir::Pass> >, mlir::Operation*, mlir::AnalysisManager, bool, unsigned int, mlir::PassInstrumentor*, mlir::PassInstrumentation::PipelineParentInfo const*) (/home/rice/mlir/mlir-project/llvm-project-public-gpu-codegen-upstream/build-mlir/bin/../lib/libMLIRPass.so.13git+0xeea3)
#8 0x00007f13cfd49ef2 mlir::detail::OpToOpPassAdaptor::runOnOperationAsyncImpl(bool)::$_8::operator()(llvm::MutableArrayRef<mlir::OpPassManager>) const Pass.cpp:0:0
#9 0x00007f13cfd45f4f mlir::detail::OpToOpPassAdaptor::runOnOperationAsyncImpl(bool) (/home/rice/mlir/mlir-project/llvm-project-public-gpu-codegen-upstream/build-mlir/bin/../lib/libMLIRPass.so.13git+0xff4f)
#10 0x00007f13cfd449d0 mlir::detail::OpToOpPassAdaptor::run(mlir::Pass*, mlir::Operation*, mlir::AnalysisManager, bool, unsigned int) (/home/rice/mlir/mlir-project/llvm-project-public-gpu-codegen-upstream/build-mlir/bin/../lib/libMLIRPass.so.13git+0xe9d0)
#11 0x00007f13cfd44ea3 mlir::detail::OpToOpPassAdaptor::runPipeline(llvm::iterator_range<llvm::pointee_iterator<std::unique_ptr<mlir::Pass, std::default_delete<mlir::Pass> >*, mlir::Pass> >, mlir::Operation*, mlir::AnalysisManager, bool, unsigned int, mlir::PassInstrumentor*, mlir::PassInstrumentation::PipelineParentInfo const*) (/home/rice/mlir/mlir-project/llvm-project-public-gpu-codegen-upstream/build-mlir/bin/../lib/libMLIRPass.so.13git+0xeea3)
#12 0x00007f13cfd46c8c mlir::PassManager::run(mlir::Operation*) (/home/rice/mlir/mlir-project/llvm-project-public-gpu-codegen-upstream/build-mlir/bin/../lib/libMLIRPass.so.13git+0x10c8c)
#13 0x00007f13dad12a60 performActions(llvm::raw_ostream&, bool, bool, llvm::SourceMgr&, mlir::MLIRContext*, mlir::PassPipelineCLParser const&) MlirOptMain.cpp:0:0
#14 0x00007f13dad10cf9 processBuffer(llvm::raw_ostream&, std::unique_ptr<llvm::MemoryBuffer, std::default_delete<llvm::MemoryBuffer> >, bool, bool, bool, bool, mlir::PassPipelineCLParser const&, mlir::DialectRegistry&) MlirOptMain.cpp:0:0
#15 0x00007f13dad1167f mlir::MlirOptMain(int, char**, llvm::StringRef, mlir::DialectRegistry&, bool) (/home/rice/mlir/mlir-project/llvm-project-public-gpu-codegen-upstream/build-mlir/bin/../lib/libMLIROptLib.so.13git+0x467f)
#16 0x000000000040a06b main (../../../build-mlir/bin/mlir-opt+0x40a06b)
#17 0x00007f13cb350555 __libc_start_main (/lib64/libc.so.6+0x22555)
#18 0x0000000000409d39 _start (../../../build-mlir/bin/mlir-opt+0x409d39)