libclang JIT frontend

Hi,

I’m not sure if this is a libclang, llvm::cl or clang-interpreter issue so I’ll try posting here for a response.

I am using libclang as a frontend to the LLVM JIT (3.3 release). I started from the clang-interpreter example and have everything working (given a C/C++ source file I can have it JIT’d to memory and executed) for a single run. When I try to compile a second source file I get an infinite loop reporting the following:

rdsuvideodrome:~/ciEx> ./ciEx.out

Result = 55

: CommandLine Error: Argument ‘verify-loop-info’ defined more than once!

: CommandLine Error: Argument ‘verify-scev’ defined more than once!

: CommandLine Error: Argument ‘scalar-evolution-max-iterations’ defined more than once!

: CommandLine Error: Argument ‘struct-path-tbaa’ defined more than once!

: CommandLine Error: Argument ‘enable-tbaa’ defined more than once!

: CommandLine Error: Argument ‘enable-bc-uselist-preserve’ defined more than once!

: CommandLine Error: Argument ‘agg-antidep-debugmod’ defined more than once!

--------------- end snip, but this continues and continues! -------------------

The “Result = 55” is the correct return value from compiling the first source file (i.e fib(10)). Processing the second causes the repeating complaints. I can execute the JIT’d code multiple times, just can’t compile a second file.

I went back to the original clang-interpreter example and found that the issue exists there as well (modifying the example to run twice on different input). I’ve included my slightly modified version of the example code below (all you need to do is create two test files “test1.c” and “test2.c” in the same dir — I’ve included my simple test files also below).

As I mentioned I’m not sure if this is:

  • a libclang issue (can libclang be called into multiple times as this example does?)

  • a limitation of the simple clang-interpreter example

  • or is state being held in llvm:cl across compilation requests?

From looking at the code and debugging, it appears that the call to Clang.ExecuteAction(*Act) the second time around causes llvm::cl::RegisteredOptionList (from lib/Support/CommandLine.cpp) to contain a huge (unbounded?) number of nodes. This becomes an issue when the list is processed in GetOptionInfo().

Any ideas?

Thanks for your help,

Jay

//=============================================================================

/******* test1.c *********/

int fib( int x )

{

if ( x == 0 )

return 0;

if ( x == 1 )

return 1;

return ( fib( x-1 ) + fib( x-2) );

}

int main( int argc, char** argv )

{

return fib( 10 );

}

//=============================================================================

/******* test2.c *********/

int fib2( int x )

{

if ( x == 0 )

return 0;

if ( x == 1 )

return 1;

return ( fib2( x-1 ) + fib2( x-2) );

}

int main( int argc, char** argv )

{

return fib2( 12 );

}

//=============================================================================

/****** Modified clang-interpreter example. *********/

//===-- examples/clang-interpreter/main.cpp - Clang C Interpreter Example -===//

//

// The LLVM Compiler Infrastructure

//

// This file is distributed under the University of Illinois Open Source

// License. See LICENSE.TXT for details.

//

//===----------------------------------------------------------------------===//

#include “clang/CodeGen/CodeGenAction.h”

#include “clang/Basic/DiagnosticOptions.h”

#include “clang/Driver/Compilation.h”

#include “clang/Driver/Driver.h”

#include “clang/Driver/Tool.h”

#include “clang/Frontend/CompilerInstance.h”

#include “clang/Frontend/CompilerInvocation.h”

#include “clang/Frontend/FrontendDiagnostic.h”

#include “clang/Frontend/TextDiagnosticPrinter.h”

#include “llvm/ADT/OwningPtr.h”

#include “llvm/ADT/SmallString.h”

#include “llvm/ExecutionEngine/ExecutionEngine.h”

#include “llvm/ExecutionEngine/JIT.h”

#include “llvm/IR/Module.h”

#include “llvm/Support/Host.h”

#include “llvm/Support/ManagedStatic.h”

#include “llvm/Support/Path.h”

#include “llvm/Support/TargetSelect.h”

#include “llvm/Support/raw_ostream.h”

using namespace clang;

using namespace clang::driver;

// This function isn’t referenced outside its translation unit, but it

// can’t use the “static” keyword because its address is used for

// GetMainExecutable (since some platforms don’t support taking the

// address of main, and some platforms can’t implement GetMainExecutable

// without being given the address of a function in the main executable).

llvm::sys::Path GetExecutablePath(const char *Argv0) {

// This just needs to be some symbol in the binary; C++ doesn’t

// allow taking the address of ::main however.

void MainAddr = (void) (intptr_t) GetExecutablePath;

return llvm::sys::Path::GetMainExecutable(Argv0, MainAddr);

}

static int Execute(llvm::Module *Mod, char * const *envp) {

llvm::InitializeNativeTarget();

std::string Error;

OwningPtrllvm::ExecutionEngine EE(

llvm::ExecutionEngine::createJIT(Mod, &Error));

if (!EE) {

llvm::errs() << "unable to make execution engine: " << Error << “\n”;

return 255;

}

llvm::Function *EntryFn = Mod->getFunction(“main”);

if (!EntryFn) {

llvm::errs() << “‘main’ function not found in module.\n”;

return 255;

}

// FIXME: Support passing arguments.

std::vectorstd::string Args;

Args.push_back(Mod->getModuleIdentifier());

return EE->runFunctionAsMain(EntryFn, Args, envp);

}

//int main(int argc, const char **argv, char * const *envp) {

int interpretFile (int argc, const char *argv, char * const *envp) {

void MainAddr = (void) (intptr_t) GetExecutablePath;

// llvm::sys::Path Path = GetExecutablePath(argv[0]);

llvm::sys::Path Path = GetExecutablePath(argv);

IntrusiveRefCntPtr DiagOpts = new DiagnosticOptions();

TextDiagnosticPrinter *DiagClient =

new TextDiagnosticPrinter(llvm::errs(), &*DiagOpts);

IntrusiveRefCntPtr DiagID(new DiagnosticIDs());

DiagnosticsEngine Diags(DiagID, &*DiagOpts, DiagClient);

Driver TheDriver(Path.str(), llvm::sys::getProcessTriple(), “a.out”, Diags);

TheDriver.setTitle(“clang interpreter”);

// FIXME: This is a hack to try to force the driver to do something we can

// recognize. We need to extend the driver library to support this use model

// (basically, exactly one input, and the operation mode is hard wired).

// SmallVector<const char *, 16> Args(argv, argv + argc);

SmallVector<const char *, 16> Args(2, argv);

Args.push_back(“-fsyntax-only”);

OwningPtr C(TheDriver.BuildCompilation(Args));

if (!C)

return 0;

// FIXME: This is copied from ASTUnit.cpp; simplify and eliminate.

// We expect to get back exactly one command job, if we didn’t something

// failed. Extract that job from the compilation.

const driver::JobList &Jobs = C->getJobs();

if (Jobs.size() != 1 || !isadriver::Command(*Jobs.begin())) {

SmallString<256> Msg;

llvm::raw_svector_ostream OS(Msg);

C->PrintJob(OS, C->getJobs(), "; ", true);

Diags.Report(diag::err_fe_expected_compiler_job) << OS.str();

return 1;

}

const driver::Command *Cmd = castdriver::Command(*Jobs.begin());

if (llvm::StringRef(Cmd->getCreator().getName()) != “clang”) {

Diags.Report(diag::err_fe_expected_clang_command);

return 1;

}

// Initialize a compiler invocation object from the clang (-cc1) arguments.

const driver::ArgStringList &CCArgs = Cmd->getArguments();

OwningPtr CI(new CompilerInvocation);

CompilerInvocation::CreateFromArgs(*CI,

const_cast<const char **>(CCArgs.data()),

const_cast<const char **>(CCArgs.data()) +

CCArgs.size(),

Diags);

// Show the invocation, with -v.

if (CI->getHeaderSearchOpts().Verbose) {

llvm::errs() << “clang invocation:\n”;

C->PrintJob(llvm::errs(), C->getJobs(), “\n”, true);

llvm::errs() << “\n”;

}

// FIXME: This is copied from cc1_main.cpp; simplify and eliminate.

// Create a compiler instance to handle the actual work.

CompilerInstance Clang;

Clang.setInvocation(CI.take());

// Create the compilers actual diagnostics engine.

Clang.createDiagnostics();

if (!Clang.hasDiagnostics())

return 1;

// Infer the builtin include path if unspecified.

if (Clang.getHeaderSearchOpts().UseBuiltinIncludes &&

Clang.getHeaderSearchOpts().ResourceDir.empty())

Clang.getHeaderSearchOpts().ResourceDir =

CompilerInvocation::GetResourcesPath(argv, MainAddr);

// CompilerInvocation::GetResourcesPath(argv[0], MainAddr);

// Create and execute the frontend to generate an LLVM bitcode module.

OwningPtr Act(new EmitLLVMOnlyAction());

if (!Clang.ExecuteAction(*Act))

return 1;

int Res = 255;

if (llvm::Module *Module = Act->takeModule())

Res = Execute(Module, envp);

llvm::errs() << "Result = " << Res << “\n”; //Not an error, but just report Res to see what happened.

// Shutdown.

llvm::llvm_shutdown();

return Res;

}

//int main(int argc, const char **argv, char * const *envp) {

int main(int argc, const char **argv) {

char* const* envp;

interpretFile( 1, “test1.c”, envp );

interpretFile( 1, “test2.c”, envp );

}