
Profiling Challenges for 
PGO Pipeline

Maksim Panchenko
Meta



Overview

● History of PGO at Meta
● Optimal PGO Pipeline
● Real-world Use Cases
● Future Improvements



WSC Disclaimer

Most of optimizations for WSC are also applicable to large client-side apps:

● Compilers
● WWW Browsers
● OS Kernels
● Games



WSC Disclaimer

Most of optimizations for WSC are also applicable to large client-side apps:

● Compilers
● WWW Browsers
● OS Kernels
● Games

Key focus:

● 0.5% CPU time improvement is significant
● Code size is secondary to application performance

○ Larger, faster code (e.g., due to aggressive inlining) is considered better



PGO History at Meta



“Hot Text”

● Linker Map / Function Order version of PGO
● Production Profile → HFSort/C3 → Linker Map File

○ Optimizing function placement for large-scale data-center applications, G. Ottoni and B. 
Maher, CGO ‘17

● Huge reduction in iTLB misses (> 40%) and CPU cycles (> 5%)
○ Ivy Bridge - “small” TLB

● Huge Pages for code
○ x86-64: 4 KB pages by default

■ 12 MB → 3000 pages
○ Remap “Hot Text” to 2 MB pages during startup

■ 12 MB → 6 pages
○ ~2% CPU time reduction on top of HFSort/C3



“Hot Text” Profile

● Collect cycles/instructions samples in production
● Update linker script / function order for every release

○ Hot fixes may or may not require an update
● Performance comparison against the release

○ Minor performance differences
○ Namespace changes



PGO in Binary Optimizer

● PGO was borked for GNU g++ w/ exceptions back in 2015
● Code layout optimizations

○ Compiler-agnostic
■ Support GCC, Clang, ICC

○ Linker-agnostic
■ BFD ld, gold, lld

● BOLT - Binary Optimization and Layout Tool
○ Open-sourced in 2018
○ BOLT: a practical binary optimizer for data centers and beyond, M. Panchenko et al., CGO ‘19
○ 7% CPU time improvement on top of “Hot Text” for HHVM

■ Fewer I$ misses and branch mispredictions
○ Up to 20% on top of PGO+LTO using real-world benchmarks

■ Greatly Exceeded Expectations
○ Integrated HFSort / function layout



Profiling with BOLT



BOLT Profile

● Binary-Level Profile
○ Branches and Fall-throughs recorded as offsets from function start
○ Alternative format: tied to internal CFG
○ 100% accurate when applied to the profiled binary

● No need to rebuild the binary after profiling
● Hot fixes

○ Recollect profile if possible
● Profiling time: 3 minutes for HHVM (after JIT warm-up)



Evolution of BOLT

● LLVM project
○ Not tied to Clang
○ Golang support with Huawei patches

● Built-in instrumentation when LBR-like sampling not available
● x86-64, Aarch64, RISC-V (*)
● 64-bit ELF

○ x86-64 Linux Kernel (*)
● Lightning BOLT

○ ~1 minute to optimize large application without DWARF update
○ Seconds to rewrite Linux kernel



⏩ Meta 2023: Clang ThinLTO + PGO + BOLT

● Clang’s CSSPGO Context-Sensitive Sampling PGO
○ 1-3% performance improvement over AutoFDO
○ Some services use IRPGO

● Two profiles better than one
○ Step 0: Collect CSSPGO profile
○ Step 1: Build binary with CSSPGO profile
○ Step 2: Collect BOLT profile
○ Step 3: Apply BOLT profile to binary from Step 1

■ No need to rebuild the binary



Zero-Gap Release



Zero-Gap Profile

● Optimize what you profile
○ Profile collection starts after the new release is cut

● Requires prod canaries or representative workloads
○ Not always 100% representative

● Good when the release cadence is low
○ Once a week or less frequent

● Optimal pipeline if profile workload matches prod
● Drawbacks:

○ Longer release process
■ Requires separate deployment for the release
■ Two profiles have to be collected sequentially

○ Hot Fixes take longer to ship or ship with perf penalty
○ Accurate performance measurements against the release are difficult



Continuous Profiling

● Optimize with existing profile
○ Profile data is collected on previous release

● Best for high-frequency releases
○ Source code gap is “small”

● Profile is collected in production
○ No need for separate canary/deployment

● Drawback: “Stale” profile and performance loss
○ Compiler PGO has to match the profile to a different source code / IR

■ Inaccurate profile with larger source code gaps
○ BOLT: Binary is different

■ Sampling ⇒ Non-deterministic profile ⇒ Non-deterministic compiler output
■ Minor changes in CSSPGO profile lead to different inlining decisions

● “Butterfly Effect”
● > 50% functions not optimized



BOLT-Compatible CSSPGO Pipeline

● Mixture of Zero-Gap and Continuous profile
● CSSPGO uses continuous profile
● BOLT profile is collected on the new release
● Drawbacks:

○ Still needs separate deployment for the release
○ Perf loss due to stale CSSPGO profile



Other Profiling Challenges

Case Study - ZippyDB

● Extremely heterogeneous workload
● Best profile on canary → ~30% of functions running in production



WIP Improvements

● Stale profile matching
○ Compiler Incremental PGO: --salvage-stale-profile
○ BOLT: --infer-stale-profile

■ Uses CFG matching
■ More work required to work with BOLTed binaries

○ Closes the performance “Gap”
● Make sampling-based PGO more stable

○ Same source + “almost” identical profile ⇒ poor binary match
● Dynamic BOLT optimization

○ Leverage BOLT advantages
■ No need for sources
■ Fast code rewrite

○ Covers heterogeneous workloads well
○ No 100% parity with static BOLT using identical profiles



Thanks!


