
 Open Source

Practical Compiler Optimizations
for Warehouse-Scale Applications

Maksim Panchenko - Meta

Daniel Hoekwater (he/him) - Google
Teresa Johnson (she/her) - Google
October 10, 2023

Katya Romanova - Sony
Matthew Voss - Sony
Konstantin Belochapka - Sony

 Open Source

Workshop Schedule
Presentation: Warehouse-Scale
Computing (WSC) @ Google

Presentation: WSC @ Meta

Open round table: Optimizing for WSC

8:30 - 9:00am

9:00 - 9:30am

10:30am - 12:30pm

9:30 - 10:00am

10:00 - 10:30am Break

Presentation: WSC @ Sony

 Open Source

Warehouse-Scale Computing at
Google

Daniel Hoekwater (he/him) - Google
Teresa Johnson (she/her) - Google
October 10, 2023

 Open Source

● Motivation & Workshop Goals

● Performance Characteristics of Google Workloads

● Bread-and-Butter Optimizations at Google

● Deep Dive: ThinLTO

● Feedback-Driven Optimizations (iFDO, CSFDO, AFDO, Propeller)

● Deep Dive: Propeller

Agenda

 Open Source

● Motivation

○ Warehouse-scale and desktop apps are like apples and oranges

○ Google develops optimizations for WSC, and we're far from the only ones; we'd

like to hear from you!

● Goals: align with LLVM community on

■ What do WSC workloads look like?

■ What optimizations matter most for WSC?

■ Is there overlap between companies? Room for collaboration?

Motivation & workshop goals

Motivation:

Warehouse-scale computing workloads differ greatly from desktop computing
applications (1). However, it is common to overestimate the representativeness of
desktop workloads, such as SPEC CPU (2). Google uses many first-party compiler
optimizations (e.g. FDO, ThinLTO) for WSC workloads, but we're not the only ones
who care about server-side performance. LLVM thrives on communication; we want to
hear your experiences with optimizing the same space and work together to identify
opportunities for collaboration.

1. AsmDB: Understanding and Mitigating Front-End Stalls in Warehouse-Scale
Computers
2. RETROSPECTIVE: Profiling a warehouse-scale computer

https://storage.googleapis.com/pub-tools-public-publication-data/pdf/e52f61fd2c51e8962305120548581efacbc06ffc.pdf
https://storage.googleapis.com/pub-tools-public-publication-data/pdf/e52f61fd2c51e8962305120548581efacbc06ffc.pdf
https://bpb-us-w2.wpmucdn.com/sites.coecis.cornell.edu/dist/7/587/files/2023/06/kanev_2015_profiling.pdf

 Open Source

Google workloads from the top
down

 Open Source

● Method for performance analysis & counters architecture (A Yasin, 2014)

Background: top-down analysis

Retiring Front-end bound Bad speculation Back-end bound

16% 11% 6% 67%

14% 44% 5% 37%

471.omnetpp (SPEC CPU 2006)

search3 (Google)

Top-down analysis is an approach for categorizing processor pipeline slots. The
classification criteria are fairly simple (1):

- Is a uop issued?
- If yes...

- Does the uop ever retire?
- If yes... classify as: Retiring
- If no... classify as: Bad Speculation

- If no..
- Backend stall?
- If yes... classify as: Backend Bound
- If no... classify as: Frontend Bound

Google workloads have higher icache miss rates and lower IPC than desktop
benchmarks (2). Note: over time, memory bandwidth has become more scarce,
leading to backend stalls making up a growing fraction of cycles (3).

1. A Top-Down method for performance analysis and counters architecture
2. Profiling a warehouse-scale computer
3. RETROSPECTIVE: Profiling a warehouse-scale computer

https://ieeexplore.ieee.org/abstract/document/6844459
https://ieeexplore.ieee.org/abstract/document/6844459
https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/44271.pdf
https://bpb-us-w2.wpmucdn.com/sites.coecis.cornell.edu/dist/7/587/files/2023/06/kanev_2015_profiling.pdf

 Open Source

● Massive binaries with large text sections

● Many basic blocks, most of which are cold

● Incremental builds

● Shared code/modules

● Wide dependency trees

Characteristics of Google workloads (spoiler: they're big)

Google's workloads are massive, which drives our optimization decisions. (1)
- Huge instruction footprint, high fraction of cycles spent on front-end stalls (1)

- Many basic blocks, most of which are cold (1)
- "Generally, in roughly half of even the hottest functions, more

than half of the code bytes are practically never executed, but
likely to be in the cache." (1)

- Large text sections
- "Instruction footprint (...) over 100 times larger than (...) an L1

instruction cache" (1)
- Builds are incremental, i.e. they don't change all at once (3)
- Serial builds are infeasible (2)

- Shared code/modules (2)
- Wide dependency tree (2)

1. AsmDB: Understanding and Mitigating Front-End Stalls in Warehouse-Scale
Computers
2. Smart Build Targets Batching Service at Google
3. ThinLTO: Scalable and Incremental LTO

https://storage.googleapis.com/pub-tools-public-publication-data/pdf/e52f61fd2c51e8962305120548581efacbc06ffc.pdf
https://storage.googleapis.com/pub-tools-public-publication-data/pdf/e52f61fd2c51e8962305120548581efacbc06ffc.pdf
https://arxiv.org/pdf/2102.09098.pdf
https://dl.acm.org/doi/pdf/10.5555/3049832.3049845

 Open Source

Bread-and-butter optimizations at Google
● Cached, distributed build: Bazel w/ BuildRabbit

● Parallelized, incremental link-time optimizations: ThinLTO

● Feedback-driven compiler optimizations: FDO

● Profile-guided relinking optimizations: Propeller

● ... and many more: TCMalloc, Hugepages, Memprof (WIP)

Bazel (Building a Distributed Build System at Google Scale)
- Cached

- Incremental builds and shared modules mean independent builds have
lots of overlapping compile units

- Distributed
- Massive binaries can't be serially-compiled
- Wide dependency trees are easily parallelized

ThinLTO (ThinLTO: Scalable and incremental LTO)
- Parallelized: motivated by...

- Massive binaries with large text sections
- Distributed build

- Incremental: motivated by...
- Incremental builds

FDO (AutoFDO: Automatic Feedback-Directed Optimization for Warehouse-Scale
Applications)

- Motivated by...
- Many basic blocks, most of which are cold

Propeller (Propeller: A Profile Guided, Relinking Optimizer for Warehouse-Scale
Applications)

- Motivated by...
- Massive binaries with large text sections

https://gotocon.com/dl/goto-chicago-2016/slides/AysyluGreenberg_BuildingADistributedBuildSystemAtGoogleScale.pdf
http://ieeexplore.ieee.org/document/7863733?reload=true
https://storage.googleapis.com/pub-tools-public-publication-data/pdf/45290.pdf
https://dl.acm.org/doi/10.1145/3575693.3575727
https://github.com/google/tcmalloc
http://google.github.io/tcmalloc/temeraire.html
http://groups.google.com/g/llvm-dev/c/0PN-rBV9WAs/m/MfF8OmJIAQAJ
https://gotocon.com/dl/goto-chicago-2016/slides/AysyluGreenberg_BuildingADistributedBuildSystemAtGoogleScale.pdf
http://ieeexplore.ieee.org/document/7863733?reload=true
https://storage.googleapis.com/pub-tools-public-publication-data/pdf/45290.pdf
https://storage.googleapis.com/pub-tools-public-publication-data/pdf/45290.pdf
https://dl.acm.org/doi/10.1145/3575693.3575727
https://dl.acm.org/doi/10.1145/3575693.3575727

- Distributed build
- Many basic blocks, most of which are cold
- Incremental builds

Additional optimizations:
- Software prefetching (AsmDB: Understanding and Mitigating Front-End Stalls

in Warehouse-Scale Computers, APT-GET: profile-guided timely software
prefetching)

- Custom tuned memory allocation: TCMalloc (google/tcmalloc)
- Hugepages (Temeraire: Hugepage-Aware Allocator | tcmalloc)
- Profile-guided heap optimization (Work in progress) ([llvm-dev] RFC:

Sanitizer-based Heap Profiler)

https://storage.googleapis.com/pub-tools-public-publication-data/pdf/e52f61fd2c51e8962305120548581efacbc06ffc.pdf
https://storage.googleapis.com/pub-tools-public-publication-data/pdf/e52f61fd2c51e8962305120548581efacbc06ffc.pdf
https://dl.acm.org/doi/abs/10.1145/3492321.3519583
https://dl.acm.org/doi/abs/10.1145/3492321.3519583
https://github.com/google/tcmalloc
http://google.github.io/tcmalloc/temeraire.html
http://groups.google.com/g/llvm-dev/c/0PN-rBV9WAs/m/MfF8OmJIAQAJ
http://groups.google.com/g/llvm-dev/c/0PN-rBV9WAs/m/MfF8OmJIAQAJ

 Open Source

● Thread-cached memory allocation

○ Lots of threads: allocate with per-CPU caches

○ Opaque allocation: expose allocation metrics and tuning knobs

○ Place allocated memory in hugepages

○ 👍 reduce contention during alloc

○ 👍 improve TLB through hugepage placement

○ 👎 can degrade performance with bad memory allocator

TCMalloc

$ # Simply add -ltcmalloc option*

$ clang -ltcmalloc -O3 example.c -o example

*alternatively, see TCMalloc Quickstart

hugepages: Temeraire Temeraire: Hugepage-Aware Allocator | tcmalloc

Note: There are a couple of versions of tcmalloc: the old, unmaintained version (which
is bundled with gperftools) and the newer, released version (which is independently
hosted on GitHub). For all intents and purposes, the old version is dead; if you want to
test out tcmalloc for your use case, we recommend you start with the TCMalloc
Quickstart.

https://google.github.io/tcmalloc/quickstart.html
https://google.github.io/tcmalloc/temeraire.html
https://google.github.io/tcmalloc/quickstart.html
https://google.github.io/tcmalloc/quickstart.html

 Open Source

Deep dive: ThinLTO

Monolithic LTO

● First part of compile is fully parallel

● First part of compile is fully incremental

● Enables cross-module whole program

optimization

● LTO compilation is not parallel

● LTO compilation is not incremental

● LTO compilation does not scale in memory

Traditionally, link time optimization works by compiling to objects of compiler IR
(instead of native), with the link merging all IR into a single unit. The optimization
pipeline is then run on the merged unit before code generating a single native object
feeding a native link. This enables the most aggressive cross-module and whole
program optimizations, however, the large size of the merged unit is not scalable in
time or memory, nor is it incremental (any change to any input file requires full
reoptimization of the entire program).

ThinLTO

● First part of compile is fully parallel

● First part of compile is fully incremental

● Enables cross-module whole program

optimization

● LTO Thin Link summary-based analysis is serial

but very lightweight (memory, time)

● LTO backend compilation is fully parallel

● LTO backend compilations can be distributed

● LTO backend compilation is fully incremental

● LTO backend compilation scales in memory

ThinLTO addresses this by performing the serial whole program step on small
lightweight summaries of each IR object file. The analysis results and decisions (such
as cross-module imports for enabling cross-module inlining) are then fed to
completely independent ThinLTO backend compilations. These backend compilations
first apply the whole program decisions, including importing copies of function bodies
as directed from other IR objects, before invoking the normal optimization and code
generation pipelines. The imported code copies are dropped after inlining. The
generated native objects go through a normal native link.

The entire ThinLTO link can either be performed in a single linker process (the
default), where the parallel backends are invoked as threads, which makes the user
interface the same as non-LTO compilation. Or they can be performed as separate
compilation processes and integrated with a distributed build system. Because the
analysis results contain all the information needed to determine whether each
ThinLTO backend needs to be re-executed (e.g. the whole program decisions
affecting each module, as well as hashes of the individual IR files), we can use that to
access a build cache and make incremental build decisions.

 Open Source

● After compilation:

○ Generate bitcode summaries in parallel

○ Perform LTO IR optimizations and codegen in parallel

● Read indexed summaries and perform serial whole program optimization

● 👍 far superior scaling than LLVM/GCC LTO

● 👍 incremental and distributed build friendly

● 👍 safe for always-on optimization, doesn't degrade performance

● 👎 not quite as effective as standard LTO

ThinLTO

$ # Simply add -flto=thin option
$ clang -flto=thin -O2 file1.o file2.o -o a.out

Since Google binaries are huge, standard LLVM LTO is infeasible.
ThinLTO scales LTO by:

- Generating bitcode summaries in parallel
- Performing LTO IR optimizations and codegen in parallel

The final step of ThinLTO is reading the indexed summaries and performing a single
serial whole program optimization

Since bitcode summary generation, LTO IR optimizations, and codegen are all
parallelized stages, they have suitable scaling for distributed build.
Since each parallel task is deterministic, previous results are easily cached, making
incremental builds require incremental work.
Since ThinLTO is safe for reasonable inputs and doesn't degrade performance, it can
be applied to a heterogeneous set of workloads all at once, rather than manually
tailoring the optimization for each workload.
Source: ThinLTO: Scalable and Incremental LTO

ThinLTO is supported by LLVM and easily enabled with a single flag.
For more details, see the LLVM documentation:
ThinLTO — Clang 18.0.0git documentation

https://storage.googleapis.com/pub-tools-public-publication-data/pdf/af0a39422b19fbbe063479f5d3a71d9278677314.pdf
https://clang.llvm.org/docs/ThinLTO.html#usage

 Open Source

Feedback-Driven Optimization
(FDO)

“
 Open Source

WSC applications typically

miss [L2 icache] in the range of 5-20 MPKI,

 an order of magnitude more frequently

than the worst cases in SPEC CPU2006

Profiling a warehouse-scale computer
S. Kanev, et. al, 2014

The primary motivation for FDO is mitigating frontend stalls, which occur in
warehouse-scale applications much more often than in traditional benchmarking
suites such as SPEC CPU (1).

1. Profiling a warehouse-scale computer

Full quote: "The most probable cause is a non-negligible fraction of long latency
instruction miss events – most likely instruction misses in the L2 cache. Such a
hypothesis is confirmed by the high exhibited L2 instruction miss rates from Figure 8.
WSC applications typically miss in the range of 5-20 MPKI, an order of magnitude
more frequently than the worst cases in SPEC CPU2006, and, at the high end of that
interval, 50% higher than the rates measured for the scale-out workloads of
CloudSuite [14]."

https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/44271.pdf

 Open Source

● Motivation: short basic blocks, most of which are cold

● Solution: use profile data to drive optimization decisions

○ Function & basic block layout

○ Function splitting

○ Function inlining

○ Loop unrolling, branch optimization

○ Speculative code motion, hoisting

○ And many more!

FDO at a glance

Motivation: most basic blocks are cold... like, really cold.
- "even among the hottest and most well-optimized functions in our server fleet,

more than 50% of code is completely cold" (1)

Solution: use profile data to drive optimization decisions
- Function & basic block layout (2)
- Function splitting (3)
- Function inlining (4)
- Loop unrolling, branch optimization
- Speculative code motion, hoisting
- And many more!

1. AsmDB: Understanding and Mitigating Front-End Stalls in Warehouse-Scale
Computers
2. Codestitcher: Inter-Procedural Basic Block Layout Optimization
3. [llvm-dev] [RFC] Machine Function Splitter
4. ⚙ D98213 [InlineCost] Enable the cost benefit analysis on FDO

https://storage.googleapis.com/pub-tools-public-publication-data/pdf/e52f61fd2c51e8962305120548581efacbc06ffc.pdf
https://storage.googleapis.com/pub-tools-public-publication-data/pdf/e52f61fd2c51e8962305120548581efacbc06ffc.pdf
https://arxiv.org/pdf/1810.00905.pdf
https://groups.google.com/g/llvm-dev/c/RUegaMg-iqc/m/wFAVxa6fCgAJ
https://reviews.llvm.org/D98213

 Open Source

Traditional vs AutoFDO

Code (v1)
Release

Code (v2)
Release

iFDO

AFDO

Code (v1) on load test

Code (v1) Release

Profile collection

Code (v2) on load test

Code (v2) Release

Profile collection

Profile collection

"Traditional FDO follows a three-step pattern:
1. Compile with instrumentation
2. Run a benchmark to generate representative profile
3. Recompile with the profile"

With traditional FDO, sequential releases are independent of each other and require
representative benchmarks.

AutoFDO forms a loop:
1. Collect a profile from your binary running in production
2. Use the profile to generate an optimized binary, which you push to

production
3. Go to step 1.

Source: AutoFDO: Automatic Feedback-Directed Optimization for Warehouse-Scale
Applications

https://storage.googleapis.com/pub-tools-public-publication-data/pdf/45290.pdf
https://storage.googleapis.com/pub-tools-public-publication-data/pdf/45290.pdf

 Open Source

● AutoFDO: automatic profile collection from production workloads

○ FDO requires representative load test

○ Instead, profile the workload directly

○ 👍 implicitly representative profiles

○ 👍 low bar to entry

○ 👎 vulnerable to source drift

○ 👎 relies on debug info for sample attribution

Lowering the bar

AutoFDO: automatic profile collection from production workloads (1)
- FDO requires representative a load test to inform what will probably happen in

production: "run a benchmark to generate representative profile"
- "The AutoFDO profile for a target program is collected directly from an

optimized binary running in production."
- Since the profile comes from the workload itself, it is implicitly a

"representative loadtest."
- "AutoFDO has simplified the deployment of FDO in our datacenters to

require only adding some compiler flags. These advances have led to
an 8X increase in customer adoption"

- Release build latency is faster without an additional load testing step
- Vulnerable to source drift: "AutoFDO collects profiles from production binaries,

then uses these profiles when building new releases in which the source code
for a binary may have changed relative to the profiled binary."

- Relies on debug info and profile weights, which are not always preserved
through optimization passes. (2)

- Keeping around debug info takes up additional storage
- More importantly, attributing samples to a specific IR (and less

successfully, Machine IR) basic block with debug info is imperfect

1. AutoFDO: Automatic Feedback-Directed Optimization for Warehouse-Scale
Applications
2. [RFC] Profile Information Propagation Unittesting - IR & Optimizations - LLVM
Discussion Forums

https://storage.googleapis.com/pub-tools-public-publication-data/pdf/45290.pdf
https://storage.googleapis.com/pub-tools-public-publication-data/pdf/45290.pdf
https://discourse.llvm.org/t/rfc-profile-information-propagation-unittesting/73595
https://discourse.llvm.org/t/rfc-profile-information-propagation-unittesting/73595

 Open Source

● FSAFDO: flow-sensitive AutoFDO

○ AFDO profiles merge samples from cloned basic blocks

○ Add hierarchical metadata to discriminate between cloned blocks

○ 👍👍 gains profile granularity

○ 👎 increases profile size and compile time (≤5%)

○ 👎 doesn't handle ambiguous profiles

Quality profiles from the fleet

FSAFDO: flow-sensitive AutoFDO
- A basic block can behave differently depending on which block was executed

directly before it; flat basic block profiles such as those collected in AFDO can't
account for this difference.

- Add extra metadata to between map profile samples back to basic blocks
- Gets more precise profiles, which benefit basic block placement and branch

folding.
- Increases profile size (to account for metadata)
- If two identical source lines are merged (or outlined), profile samples for the

merged block are still ambiguous.

Source: [llvm-dev] [RFC] Control Flow Sensitive AutoFDO (FS-AFDO)

https://lists.llvm.org/pipermail/llvm-dev/2020-November/146694.html

 Open Source

● Instrumented FDO: enables sample-to-block mapping beyond debug info

○ AFDO requires debug info to identify blocks

○ Use instrumentation to recover control flow

○ 👍 stable speedup 👍 high sample -> block correlation

○ 👎 requires representative loadtest

● CSFDO: context-specific profiles

○ FDO has ambiguity between f(x) inlined by g(x) vs by h(x)

○ Collect another round of profiles after inlining

○ 👍 increases profile quality 👎 requires additional profiling

Refining profile quality with *FDO

Source: https://reviews.llvm.org/D54175

Helpful resource: The many faces of LLVM PGO and FDO

https://reviews.llvm.org/D54175
https://aaupov.github.io/blog/2023/07/09/pgo

 Open Source

● AutoFDO

● CSFDO

In practice

$ clang -fprofile-generate=$FDO_DIR example.c -o example # FDO-instrumented build
$./example # FDO profile
$ llvm-profdata merge -output=example.profdata $FDO_DIR
$ clang -fprofile-use=example.profdata -fcs-profile-generate=$CSFDO_DIR \
 example.c -o fdo_example # CSFDO-instrumented build
$./fdo_example # CSFDO profile
$ llvm-profdata merge -output=fdo_example.profdata $CSFDO_DIR example.profdata
$ clang -fprofile-use=fdo_example.profdata \
 example.c -o cs_example # CSFDO-optimized build

$ clang -O3 example.c -o example # Build 1
$ perf record -b ...; create_llvm_prof ... # Profile
$ clang -fprofile-sample-use=profile example.c -o example # Build 2

Sources: FDO: Magic “Make My Program Faster” compilation option?,

https://elinux.org/images/4/4d/Moll.pdf

 Open Source

Deep dive: Propeller

 Open Source

● Propeller: "A Framework for Post Link Optimizations"

○ *FDO has limited view of the program

Propeller: "A Framework for Post Link Optimizations"

IR cache

obj cache

Annotated
program

Backend
recompile
hot objs

RelinkHardware
profile

Whole
program
analysis

Fully optimized
binary

- *FDO has a limited view of the program
- Collect a round of sample profiles after linking
- Use precise post-link profiles to...

- refine backend optimizations (using cached IR)
- perform whole program analysis

- Relink the binary using cached objects

- Whole program analysis, relink are serial operations
- Backend recompile of hot objects is distributed and semi-incremental

Source: Propeller: A Profile Guided, Relinking Optimizer for Warehouse-Scale
Applications

https://dl.acm.org/doi/10.1145/3575693.3575727
https://dl.acm.org/doi/10.1145/3575693.3575727

 Open Source

● 👍 precise profiles don't require propagation

● 👍 whole-program block-level layout

● 👍 scalable & incremental due to IR and obj caching

● 👎 requires an additional round of profiling

Near ground truth profiles with Propeller

- Since profiles are directly mapped to machine basic blocks with the
BB_ADDR_MAP, attributing profile samples to blocks doesn't require any
additional work

- Applying profiles after linking makes it possible to factor in the whole program
when making layout decisions

- The additional round of profiling provides data points for evaluating the
consequences of previous FDO decisions such as loop unrolling, inlining, etc.

- Because Propeller uses IR caching, it enables code layout reoptimization
without requiring disassembly. However, it does miss out on
disassembly-driven optimizations such as peephole optimization, function
alignment, conditional tail call simplification, etc. (Lightning BOLT: Powerful,
Fast, and Scalable Binary Optimization)

Source: Propeller: A Profile Guided, Relinking Optimizer for Warehouse-Scale
Applications

https://dl.acm.org/doi/pdf/10.1145/3446804.3446843
https://dl.acm.org/doi/pdf/10.1145/3446804.3446843
https://dl.acm.org/doi/10.1145/3575693.3575727
https://dl.acm.org/doi/10.1145/3575693.3575727

 Open Source

In practice

$ # Propeller-annotated build
$ clang -fprofile-use=example.profdata -fbasic-block-sections=labels \
 example.c -o fdo_example
$ # Propeller profile
$ perf record -b ./fdo_example
$ create_llvm_prof --format=propeller --binary=fdo_example \
 --profile=perf.data --out=$PROP_DIR/cc_profile.txt \
 --propeller_symorder=$PROP_DIR/ld_profile.txt
$ # Propeller-optimized build
$ clang -fprofile-use=example.profdata \
 -fbasic-block-sections=list=propeller_cc_profile \
 --Wl,--symbol-ordering-file=propeller_ld_profile \
 example.c -o prop_example

Full commands:
$ # FDO-instrumented build
$ clang -fprofile-generate=$FDO_DIR example.c -o
example
$ # FDO profile
$./example
$ llvm-profdata merge -output=example.profdata
$FDO_DIR
$ # Propeller-annotated build
$ clang -fprofile-use=example.profdata
-fbasic-block-sections=labels \
 example.c -o fdo_example
$ # Propeller profile
$ perf record -b ./fdo_example
$ create_llvm_prof --format=propeller
--binary=fdo_example \
 --profile=perf.data

--out=$PROP_DIR/cc_profile.txt \
 --propeller_symorder=$PROP_DIR/ld_profile.txt
$ # Propeller-optimized build

$ clang -fprofile-use=example.profdata \

-fbasic-block-sections=list=propeller_cc_profile \

--Wl,--symbol-ordering-file=propeller_ld_profile \
 example.c -o prop_example

Source: FDO: Magic “Make My Program Faster” compilation option?, GitHub -
google/llvm-propeller: PROPELLER: Profile Guided Optimizing Large Scale
LLVM-based Relinker

https://elinux.org/images/4/4d/Moll.pdf
https://github.com/google/llvm-propeller
https://github.com/google/llvm-propeller
https://github.com/google/llvm-propeller

 Open Source

Conclusion

 Open Source

● Google WSC workloads are massive

○ Higher icache miss rates than desktop applications

○ Distributed build necessitates distributed, incremental optimizations

○ FDO is a must for performance-sensitive applications

● Important considerations for future server-side optimization work

○ Preserve debug info and branch profile information

○ Prioritize optimization scalability and safety

● We'd love to hear your experiences!

Summary & Implications

 Open Source

Thank you!

Teresa Johnson

Software Engineer

tejohnson@google.com

Daniel Hoekwater

Software Engineer

hoekwater@google.com

 Open Source

We'll be right back!
(discussion at 10:40 AM)

