
 Open Source

Practical Compiler Optimizations
for Warehouse-Scale Applications

Maksim Panchenko - Meta

Daniel Hoekwater (he/him) - Google
Teresa Johnson (she/her) - Google
October 10, 2023

Katya Romanova - Sony
Matthew Voss - Sony
Konstantin Belochapka - Sony

 Open Source

Workshop Schedule
Presentation: Warehouse-Scale
Computing (WSC) @ Google

Presentation: WSC @ Meta

Open round table: Optimizing for WSC

8:30 - 9:00am

9:00 - 9:30am

10:30am - 12:30pm

9:30 - 10:00am

10:00 - 10:30am Break

Presentation: WSC @ Sony

 Open Source

Warehouse-Scale Computing at
Google

Daniel Hoekwater (he/him) - Google
Teresa Johnson (she/her) - Google
October 10, 2023

 Open Source

● Motivation & Workshop Goals

● Performance Characteristics of Google Workloads

● Bread-and-Butter Optimizations at Google

● Deep Dive: ThinLTO

● Feedback-Driven Optimizations (iFDO, CSFDO, AFDO, Propeller)

● Deep Dive: Propeller

Agenda

 Open Source

● Motivation

○ Warehouse-scale and desktop apps are like apples and oranges

○ Google develops optimizations for WSC, and we're far from the only ones; we'd

like to hear from you!

● Goals: align with LLVM community on

■ What do WSC workloads look like?

■ What optimizations matter most for WSC?

■ Is there overlap between companies? Room for collaboration?

Motivation & workshop goals

 Open Source

Google workloads from the top
down

 Open Source

● Method for performance analysis & counters architecture (A Yasin, 2014)

Background: top-down analysis

Retiring Front-end bound Bad speculation Back-end bound

16% 11% 6% 67%

14% 44% 5% 37%

471.omnetpp (SPEC CPU 2006)

search3 (Google)

https://ieeexplore.ieee.org/abstract/document/6844459

 Open Source

● Massive binaries with large text sections

● Many basic blocks, most of which are cold

● Incremental builds

● Shared code/modules

● Wide dependency trees

Characteristics of Google workloads (spoiler: they're big)

 Open Source

Bread-and-butter optimizations at Google
● Cached, distributed build: Bazel w/ BuildRabbit

● Parallelized, incremental link-time optimizations: ThinLTO

● Feedback-driven compiler optimizations: FDO

● Profile-guided relinking optimizations: Propeller

● ... and many more: TCMalloc, Hugepages, Memprof (WIP)

https://gotocon.com/dl/goto-chicago-2016/slides/AysyluGreenberg_BuildingADistributedBuildSystemAtGoogleScale.pdf
http://ieeexplore.ieee.org/document/7863733?reload=true
https://storage.googleapis.com/pub-tools-public-publication-data/pdf/45290.pdf
https://dl.acm.org/doi/10.1145/3575693.3575727
https://github.com/google/tcmalloc
http://google.github.io/tcmalloc/temeraire.html
http://groups.google.com/g/llvm-dev/c/0PN-rBV9WAs/m/MfF8OmJIAQAJ

 Open Source

● Thread-cached memory allocation

○ Lots of threads: allocate with per-CPU caches

○ Opaque allocation: expose allocation metrics and tuning knobs

○ Place allocated memory in hugepages

○ 👍 reduce contention during alloc

○ 👍 improve TLB through hugepage placement

○ 👎 can degrade performance with bad memory allocator

TCMalloc

$ # Simply add -ltcmalloc option*

$ clang -ltcmalloc -O3 example.c -o example

*alternatively, see TCMalloc Quickstart

https://google.github.io/tcmalloc/quickstart.html

 Open Source

Deep dive: ThinLTO

Monolithic LTO

● First part of compile is fully parallel

● First part of compile is fully incremental

● Enables cross-module whole program

optimization

● LTO compilation is not parallel

● LTO compilation is not incremental

● LTO compilation does not scale in memory

ThinLTO

● First part of compile is fully parallel

● First part of compile is fully incremental

● Enables cross-module whole program

optimization

● LTO Thin Link summary-based analysis is serial

but very lightweight (memory, time)

● LTO backend compilation is fully parallel

● LTO backend compilations can be distributed

● LTO backend compilation is fully incremental

● LTO backend compilation scales in memory

 Open Source

● After compilation:

○ Generate bitcode summaries in parallel

○ Perform LTO IR optimizations and codegen in parallel

● Read indexed summaries and perform serial whole program optimization

● 👍 far superior scaling than LLVM/GCC LTO

● 👍 incremental and distributed build friendly

● 👍 safe for always-on optimization, doesn't degrade performance

● 👎 not quite as effective as standard LTO

ThinLTO

$ # Simply add -flto=thin option
$ clang -flto=thin -O2 file1.o file2.o -o a.out

 Open Source

Feedback-Driven Optimization
(FDO)

“
 Open Source

WSC applications typically

miss [L2 icache] in the range of 5-20 MPKI,

 an order of magnitude more frequently

than the worst cases in SPEC CPU2006

Profiling a warehouse-scale computer
S. Kanev, et. al, 2014

 Open Source

● Motivation: short basic blocks, most of which are cold

● Solution: use profile data to drive optimization decisions

○ Function & basic block layout

○ Function splitting

○ Function inlining

○ Loop unrolling, branch optimization

○ Speculative code motion, hoisting

○ And many more!

FDO at a glance

 Open Source

Traditional vs AutoFDO

Code (v1)
Release

Code (v2)
Release

iFDO

AFDO

Code (v1) on load test

Code (v1) Release

Profile collection

Code (v2) on load test

Code (v2) Release

Profile collection

Profile collection

 Open Source

● AutoFDO: automatic profile collection from production workloads

○ FDO requires representative load test

○ Instead, profile the workload directly

○ 👍 implicitly representative profiles

○ 👍 low bar to entry

○ 👎 vulnerable to source drift

○ 👎 relies on debug info for sample attribution

Lowering the bar

 Open Source

● FSAFDO: flow-sensitive AutoFDO

○ AFDO profiles merge samples from cloned basic blocks

○ Add hierarchical metadata to discriminate between cloned blocks

○ 👍👍 gains profile granularity

○ 👎 increases profile size and compile time (≤5%)

○ 👎 doesn't handle ambiguous profiles

Quality profiles from the fleet

 Open Source

● Instrumented FDO: enables sample-to-block mapping beyond debug info

○ AFDO requires debug info to identify blocks

○ Use instrumentation to recover control flow

○ 👍 stable speedup 👍 high sample -> block correlation

○ 👎 requires representative loadtest

● CSFDO: context-specific profiles

○ FDO has ambiguity between f(x) inlined by g(x) vs by h(x)

○ Collect another round of profiles after inlining

○ 👍 increases profile quality 👎 requires additional profiling

Refining profile quality with *FDO

 Open Source

● AutoFDO

● CSFDO

In practice

$ clang -fprofile-generate=$FDO_DIR example.c -o example # FDO-instrumented build
$./example # FDO profile
$ llvm-profdata merge -output=example.profdata $FDO_DIR
$ clang -fprofile-use=example.profdata -fcs-profile-generate=$CSFDO_DIR \
 example.c -o fdo_example # CSFDO-instrumented build
$./fdo_example # CSFDO profile
$ llvm-profdata merge -output=fdo_example.profdata $CSFDO_DIR example.profdata
$ clang -fprofile-use=fdo_example.profdata \
 example.c -o cs_example # CSFDO-optimized build

$ clang -O3 example.c -o example # Build 1
$ perf record -b ...; create_llvm_prof ... # Profile
$ clang -fprofile-sample-use=profile example.c -o example # Build 2

 Open Source

Deep dive: Propeller

 Open Source

● Propeller: "A Framework for Post Link Optimizations"

○ *FDO has limited view of the program

Propeller: "A Framework for Post Link Optimizations"

IR cache

obj cache

Annotated
program

Backend
recompile
hot objs

RelinkHardware
profile

Whole
program
analysis

Fully optimized
binary

 Open Source

● 👍 precise profiles don't require propagation

● 👍 whole-program block-level layout

● 👍 scalable & incremental due to IR and obj caching

● 👎 requires an additional round of profiling

Near ground truth profiles with Propeller

 Open Source

In practice

$ # Propeller-annotated build
$ clang -fprofile-use=example.profdata -fbasic-block-sections=labels \
 example.c -o fdo_example
$ # Propeller profile
$ perf record -b ./fdo_example
$ create_llvm_prof --format=propeller --binary=fdo_example \
 --profile=perf.data --out=$PROP_DIR/cc_profile.txt \
 --propeller_symorder=$PROP_DIR/ld_profile.txt
$ # Propeller-optimized build
$ clang -fprofile-use=example.profdata \
 -fbasic-block-sections=list=propeller_cc_profile \
 --Wl,--symbol-ordering-file=propeller_ld_profile \
 example.c -o prop_example

 Open Source

Conclusion

 Open Source

● Google WSC workloads are massive

○ Higher icache miss rates than desktop applications

○ Distributed build necessitates distributed, incremental optimizations

○ FDO is a must for performance-sensitive applications

● Important considerations for future server-side optimization work

○ Preserve debug info and branch profile information

○ Prioritize optimization scalability and safety

● We'd love to hear your experiences!

Summary & Implications

 Open Source

Thank you!

Teresa Johnson

Software Engineer

tejohnson@google.com

Daniel Hoekwater

Software Engineer

hoekwater@google.com

 Open Source

We'll be right back!
(discussion at 10:40 AM)

