
LLVM RFC: LTO and Linker Scripts
Compiler Team

Exported on 10/06/2023

Compiler Team – LLVM RFC: LTO and Linker Scripts

 – 2

Table of Contents

1 Revisiting Qualcomm and TI Approaches to Communicating Linker Script Info
to an LTO Recompile.. 4

1.1 Motivating Example ... 4

1.2 What Information Does the LTO Recompile Need?.. 5

1.3 Qualcomm (Edler Von Koch at al) Approach .. 5

1.4 TI (Snider et al) Approach .. 5
1.4.1 Differences From Qualcomm (Edler Von Koch) Approach .. 6

1.4.2 Rationale ... 6

1.4.3 Retrospective .. 6

1.4.4 Takeaways... 7

1.5 Recommendations... 7

2 Addendum - an exploration of available information in linker scripts 8
2.1 Memory Configuration... 8

2.2 Function and Data Object Collection and Placement.. 8

2.3 What Information from the Linker Script Could the LTO Recompile Utilize? 9
2.3.1 Already Identified.. 9

2.3.2 Potentially Represented via Symbol Attribute .. 9

2.3.3 Other Kinds of Information Useful for an LTO Recompile .. 9

Compiler Team – LLVM RFC: LTO and Linker Scripts

 – 3

•
•
•
•
•

•
•
•
•

•
•

•
•
•

•
•
•

Revisiting Qualcomm and TI Approaches to Communicating Linker Script Info to an LTO Recompile(see page 4)
Motivating Example(see page 4)
What Information Does the LTO Recompile Need?(see page 5)
Qualcomm (Edler Von Koch at al) Approach(see page 5)
TI (Snider et al) Approach(see page 5)

Differences From Qualcomm (Edler Von Koch) Approach(see page 6)
Rationale(see page 6)
Retrospective(see page 6)
Takeaways(see page 7)

Recommendations(see page 7)
Addendum - an exploration of available information in linker scripts(see page 8)

Memory Configuration(see page 8)
Function and Data Object Collection and Placement(see page 8)
What Information from the Linker Script Could the LTO Recompile Utilize?(see page 9)

Already Identified(see page 9)
Potentially Represented via Symbol Attribute(see page 9)
Other Kinds of Information Useful for an LTO Recompile(see page 9)

Compiler Team – LLVM RFC: LTO and Linker Scripts

Revisiting Qualcomm and TI Approaches to Communicating Linker Script Info to an LTO Recompile – 4

•

•

•

1 Revisiting Qualcomm and TI Approaches to Communicating
Linker Script Info to an LTO Recompile

1.1 Motivating Example
Situation: Linker script is used to place a specific function (criticalFxn) in "fast" memory (OnChipMem in this
example):

Without LTO enabled, linker honors placement specified by linker script

With LTO enabled, info from linker script about placement of function from ROM.o is not available after LTO
recompile

criticalFxn ends up being placed in wrong memory region

Compiler Team – LLVM RFC: LTO and Linker Scripts

1 https://llvm.org/devmtg/2017-10/slides/LTOLinkerScriptsEdlerVonKoch.pdf
2 https://llvm.org/devmtg/2022-11/slides/QuickTalk11-Link-TimeAttributesforLTO.pdf

Revisiting Qualcomm and TI Approaches to Communicating Linker Script Info to an LTO Recompile – 5

•

•

•

•

•

•

•
•
•

•
•
•
•

•

•
•

•

•
•

•

•

1.2 What Information Does the LTO Recompile Need?
Original Object Module ID associated with a symbol definition must be carried through to the LTO recompile
generated object file (LTO.o)

Allows the linker to connect a function or data symbol's input section from the LTO.o file to an input
section specification in the linker script

Output Section in which symbol definition's input section is collected must be made known to the LTO
recompile

Can be utilized in LTO inter-module optimizations to avoid correctness and/or performance issues,
for example:

Two global constants with the same value that are allocated to separate output sections
should not be merged if one of the constants is not guaranteed to be available in target
memory at the time of access
A function allocated to "fast" memory (e.g. tightly coupled memory) that is inlined into a
function allocated to "slow" memory (e.g. off-chip/external) can degrade performance

1.3 Qualcomm (Edler Von Koch at al) Approach
Bringing link-time optimization to the embedded world: (Thin)LTO with Linker Scripts (llvm.org)1 from Oct 2017
LLVM Dev Conf

Initial compilation of individual source files
compiler adds "linker_input_section" field to a symbol's GlobalObject
"linker_input_section" information is recorded in the output IR Symbol Table for a given compilation

While processing input section to output section mappings as specified in the linker script, the linker
identifies the output section associated with a given function or data symbol
identifies the "original" object module ID that a symbol is defined in
records the output section and original object module ID in (new) fields of the SymbolResolution
record for a given symbol

Output section and module ID information from SymbolResolution records are converted to symbol
attributes

For RegularLTO, before merging an incoming IR module into the combined IR module
For ThinLTO, before and after importing an IR module

Some inter-module optimizations were modified to become aware of new symbol attributes as needed/
beneficial

Constant merging, inlining, function merging, outlining, ...
Names of sections in LTO recompile generated output file are augmented

Specifically, a section that contains the definition of a symbol is augmented with the section's
original object module ID

Post-LTO recompile, the linker decodes augmented section names to assist the linker in finding the correct
input section to output section mapping for a given symbol

1.4 TI (Snider et al) Approach
Link-Time Attributes for LTO: Incorporating Linker Knowledge Into the LTO Recompile2

https://llvm.org/devmtg/2017-10/slides/LTOLinkerScriptsEdlerVonKoch.pdf
https://llvm.org/devmtg/2022-11/slides/QuickTalk11-Link-TimeAttributesforLTO.pdf
https://llvm.org/devmtg/2017-10/slides/LTOLinkerScriptsEdlerVonKoch.pdf
https://llvm.org/devmtg/2022-11/slides/QuickTalk11-Link-TimeAttributesforLTO.pdf

Compiler Team – LLVM RFC: LTO and Linker Scripts

Revisiting Qualcomm and TI Approaches to Communicating Linker Script Info to an LTO Recompile – 6

•
•

•
•

•

•
•

•
•
•
•

•

•
•

•
•
•
•

•

•
•

•

•

•
•

•

1.4.1 Differences From Qualcomm (Edler Von Koch) Approach
Currently, the TI linker implementation assumes fat-LTO input object files
No need to add "linker_input_section" during initial compilation of individual source files

Loaded ELF object provides mapping from symbols to input sections
Like the Qualcomm approach, output sections and original module IDs are identified during processing of
input section to output section mappings as indicated in the linker script
However, instead of recording a symbol's output section and original module ID in a SymbolResolution
records, the TI linker

Adds the ability to edit IR modules directly (using available LLVM methods)
Injects output section and original module ID attributes directly into the current IR module

Like the Qualcomm approach,
Inter-module optimizations are updated to be aware of output section attribute, where appropriate
Symbol section names are augmented with a symbo's/section's original module ID
Augmented section names are parsed to help the linker find the correct input section to output
section mapping

1.4.2 Rationale
Adding linker capability to inject attributes directly into an IR module provides more flexibility than
communicating linker knowledge via SymbolResolution records
Basic SymbolResolution data structure does not need to be extended

Toolchains that use LTO, but whose use cases are not as concerned about honoring linker script
instructions are not affected

1.4.3 Retrospective
Implementation is straightforward, but adds code weight

LTOLLVMContext object, bitcode reader and writer added for parsing and editing IR modules.
Output section and original object module ID identification is already present in pre-existing linker
Symbol attributes are injected into the incoming IR module, updated IR module (in a temp file) is
passed to LTO::add()
Is adding IR module editing capability justified if we're just going to use it for two pieces of linker
script information?

Is there more information from the linker script or elsewhere that can be useful to the LTO recompile?
To understand whether there is more information from the linker script that can be passed along to
the LTO recompile, I enumerated the bits of information that one can glean from a linker script (see
"Addendum" section below).
Besides the original object module ID and output section, there does not appear to be any obvious
pieces of information that could be attached to a symbol in the form of an attribute
However, the linker script does provide information about the target memory configuration that is to
be assumed at link time

Such information could be useful for the LTO recompile
For example, given information about available memory region types (relative access speeds),
it seems intuitive that the hot/cold splitting optimization could express to the linker a
preference for hot code to be placed in faster memory to realize some performance
improvement
Symbol attributes are not the right vehicle for communicating this information to the LTO
recompile

Compiler Team – LLVM RFC: LTO and Linker Scripts

Revisiting Qualcomm and TI Approaches to Communicating Linker Script Info to an LTO Recompile – 7

•

•

•

•

•

•

•

•

•
•
•

Passing memory configuration information from the linker script to the LTO recompile will
need its own API

1.4.4 Takeaways
The flexibility afforded by having the linker generate attributes directly into a given IR module is not as
advantageous as originally anticipated
In practice, there is not much beyond a symbol's original module ID and output section that would be useful
to represent as symbol attributes in an incoming IR module to the LTO recompile
There is information about the memory configuration defined in a linker script that could be useful to LTO
optimizations

1.5 Recommendations
When considering which approach to pursue in terms of upstreaming, the LLVM Embedded Toolchain
community should consider the trade-off between adding capability to the linker to directly inject symbol
attributes into an incoming IR module vs. extending the basic SymbolResolution data structure to carry
linker placement info to the LTO recompile

Recall that one of the rationales for the TI approach was to avoid extending the basic
SymbolResolution data structure in order to avoid affecting toolchains that are not concerned about
honoring linker script instructions
There may be alternative ways of extending the SymbolResolution data structure that are more
amenable for upstreaming (e.g. perhaps a variable length array of symbol attribute descriptors?)
I suspect that adding a "linker_input_section" attribute during the compilation of individual source
files, as prescribed in the Qualcomm approach, is not necessary

TI intends to further investigate
How to communicate memory configuration information from the linker script to the LTO recompile
How memory configuration information from the linker script can be utilized during the LTO
recompile

Compiler Team – LLVM RFC: LTO and Linker Scripts

Addendum - an exploration of available information in linker scripts – 8

•
•
•
•
•

•
•
•

•
•
•
•

•
•

•
•

•
•
•

•
•
•
•
•

•
•
•

•

•

•
•
•

•
•

•

2 Addendum - an exploration of available information in linker
scripts

This is effectively a brainstorm of what information is contained in a linker script, the idea being to make a
reasonable attempt to uncover any information that could be potentially useful to an LTO recompile.

2.1 Memory Configuration
Memory Regions

Address Range
Page
Sharing - accessible to all processors in a multi-processor application
Attributes

Executable
Read Only
Read-Write

Type
Very Fast Access - for example, Tightly Coupled Memory; very limited resource
Fast Access - for example, Local On-Chip Memory; limited resource
Slow Access - for example, External Memory; relatively unlimited resource

2.2 Function and Data Object Collection and Placement
Output Sections

Mapping of input sections to output sections (i.e. collection)
Assumes: each function and data object is defined in its own input section
Allows for a single symbol to be associated with each input section

Alignment
Size
Placement Instructions

Mapping of each output section to a
specific address,
single memory region,
one of a list of memory regions, or
split among a list of memory regions

Placement mapping can pertain to
both the load and run placement
a load placement, and a separate mapping for run placement

Assumes application is responsible for copying contents from load location to
run location at run-time before referencing any symbols defined in the output
section

HIGH operator can be used to instruct the linker to allocate an output section to highest
address available in a specified memory region

Operators
Alignment of output section's start location
Padding and alignment of output section

Aligns output section's start location, and
Pads length of output section to a multiple of specified alignment

Define linker symbol

Compiler Team – LLVM RFC: LTO and Linker Scripts

Addendum - an exploration of available information in linker scripts – 9

•
•
•
•

•
•

•
•
•
•
•

•
•

•

•
•
•

Symbol value set to start location of output section
Symbol value set to end location of output section
Symbol value set to size of output section
Symbol on LHS of assignment operator

RHS is a well-defined expression (absolute value known at link time)
Dot ('.') operator used to define padding within an output section

Sharing
Contains Shared Code
Contains Globally Shared RO Data
Contains Globally Shared RW Data
Thread Local Storage

2.3 What Information from the Linker Script Could the LTO Recompile
Utilize?

2.3.1 Already Identified
Original Module ID - name of object file containing function or data object input section
Output Section - name of output section in which an input section is collected; needed for correctness in
some use cases

2.3.2 Potentially Represented via Symbol Attribute
Sharing - identify function or data object symbol as being defined in a shared object file

LTO optimizations may need to bear in mind that a shared function or data object is accessible from other
applications besides the one that is currently being built.

2.3.3 Other Kinds of Information Useful for an LTO Recompile
List of Memory Regions - available for allocating to

Attribute of Memory Region - is it read/write, read-only, executable?
Type of Memory in Region - is it very fast access, fast access, slow access?

An LTO optimization like hot/cold splitting, for example, might want to express a preference for a function or data
object to be allocated to very fast, fast, or slow memory to boost performance.

	Revisiting Qualcomm and TI Approaches to Communicating Linker Script Info to an LTO Recompile
	Motivating Example
	What Information Does the LTO Recompile Need?
	Qualcomm (Edler Von Koch at al) Approach
	TI (Snider et al) Approach
	Differences From Qualcomm (Edler Von Koch) Approach
	Rationale
	Retrospective
	Takeaways

	Recommendations

	Addendum - an exploration of available information in linker scripts
	Memory Configuration
	Function and Data Object Collection and Placement
	What Information from the Linker Script Could the LTO Recompile Utilize?
	Already Identified
	Potentially Represented via Symbol Attribute
	Other Kinds of Information Useful for an LTO Recompile

