X U.S. DEPARTMENT OF
WENERGY
H BERKELEY LAB Office of Science

Bringing Science Solutions to the World

rrrrrr

Parallel Runtime Interface for Fortran

A compiler and implementation independent interface for
supporting the parallel features of the Fortran language

https://go.lbl.gov/prif
December, 2023

https://go.lbl.gov/prif

Outline

01 02 03 04

Motivation Parallel Features High-level Design Overview Next Steps

PRIF | BERKELEY LAB

Motivation

What'’s this for?

Enable a compiler to target multiple
implementations of PRIF

— l.e. enable a vendor to supply their

own parallel runtime

Enable a PRIF implementation to be used
by multiple compilers
Isolate a compiler’s support of the parallel
features of the language from any particular
details of the communication infrastructure
Our group’s experience with UPC and
OpenCoarrays has shown this to be
valuable

PRIF | BERKELEY LAB

PRIF

Compiled Fortran Code

Compiler Runtime

Parallel Runtime

Communication Library
(i.,e. GASNet, MPI, SHMEM, etc.)

Network Hardware
(InfiniBand, Slingshot, Aries,
Omni-Path, Ethernet, ...)

Parallel Features

- Statements

— Synchronization
Explicit: sync all, sync images,
sync memory, sync team
Implicit: allocate, deallocate,
stop, end, move_alloc

— Events: event post, event wait

— Notify: notify wait

— Error termination: error stop

— Locks: lock, unlock

— Failed images: fail image

— Teams: form team, change team

Critical sections: critical, end critical

. CoarrayAccesses([1)

« Intrinsic functions: num_images, this_image,

lcobound, ucobound, team_number, get_team,
failed_images, stopped_images
image_status, coshape, image_index

PRIF | BERKELEY LAB

* |Intrinsic subroutines

Collective subroutines: co_sum, co_max,
co_min, co_reduce, co_broadcast
Atomic subroutines: atomic_add,
atomic_and, atomic_cas, atomic_define
atomic_fetch_add, atomic_fetch_and
atomic_fetch_or, atomic_fetch_xor,
atomic_or, atomic_ref, atomic_xor
Other subroutines: event_query

- Types, kind type parameters, and values

Intrinsic derived types: event_type,
team_type, lock_type, notify_type
Atomic kind type parameters:
atomic_int_kind and
atomic_logical_kind

Values: stat_failed_image,
stat_locked, stat_locked_other_image,
stat_stopped_image, stat_unlocked,
stat_unlocked_failed_image

PRIF Design Overview

Parallel Features Directly Translatable to Use of Fortran Library

me = this_image() call prif_this_image(image_index=me)

call co_sum(a, result_image=1) call prif_co_sum(&
a, result_image=1_c_int)

arr[1] = some_calc() call prif_put(&

arr_coarray_handle, &
int([1], c_intmax_t), &

some_calc(), &

int(storage_size(arr)/8, c_size_t), &

c_loc(arr))

PRIF | BERKELEY LAB 5

PRIF Design Overview: Responsibilities

Compiler

Establish and initialize static coarrays prior to main
Track corank of coarrays

Track local coarrays for implicit deallocation when
exiting a scope

Initialize a coarray with SOURCE= as part of
allocate-stmt

Provide prif_critical_type coarrays for
critical-constructs

Provide final subroutine for all derived types that are
finalizable or that have allocatable components that
appear in a coarray

Variable allocation status tracking, including use of
MOVE_ALLOC

PRIF | BERKELEY LAB

PRIF Implementation

Track coarrays for implicit deallocation at
end-team-stmt

Allocate and deallocate a coarray

Reference a coindexed-object

Team stack abstraction

form-team-stmt, change-team-stmt, end-team-stmt
Intrinsic functions related to parallel Fortran, like
num_images, etc

Atomic subroutines

Collective subroutines

Synchronization statements

Events, notify

Locks

critical-construct

Next Steps

« Submit PRIF Design Doc to LLVM-Project Repository
* Finish tests for proper behaviour of parallel features
* Finish implementation in Caffeine
« (Find help with) Integration into flang
« Track progress: https://github.com/Berkeleyl ab/flang-testing-project/projects/7
« Solicit Feedback:
— Discourse Post
— Email: |bl-flang@lbl.gov
— Specification Working Draft: https://go.Ibl.gov/prif
— We welcome issues and PRs at the above GitHub Repository

PRIF | BERKELEY LAB

https://github.com/BerkeleyLab/flang-testing-project/projects/7
https://discourse.llvm.org/t/rfc-parallel-runtime-interface-for-fortran-prif/75801
mailto:lbl-flang@lbl.gov
https://go.lbl.gov/prif

Questions?

e Email: Ibl-flang@Ibl.gov
e Specification Working Draft: hitps://go.Ibl.gov/prif

mailto:lbl-flang@lbl.gov
https://go.lbl.gov/prif

Acknowledgements

e This research is supported by the Exascale Computing Project (17-SC-20-SC), a
collaborative effort of the U.S. Department of Energy Office of Science and the National
Nuclear Security Administration

e This research used resources of the National Energy Research Scientific Computing
Center (NERSC), a U.S. Department of Energy Office of Science User Facility located at
Lawrence Berkeley National Laboratory, operated under Contract No.
DE-AC02-05CH11231

Who We are

We have experience developing parallel runtimes, parallel applications, Flang frontend parallel
features, and parallel unit tests:

PRIF | BERKELEY LAB

OpenCoarrays: Fanfarillo, A., Burnus, T., Cardellini, V., Filippone, S., Nagle, D., & Rouson, D. (2014). “OpenCoarrays: open-source
transport layers supporting coarray Fortran compilers.” In Proceedings of the 8th International Conference on Partitioned Global
Address Space Programming Models (pp. 1-11). doi: 10.1145/2676870.2676876

Caffeine: Rouson, D., & Bonachea, D. (2022). “Caffeine: CoArray Fortran Framework of Efficient Interfaces to Network Environments.”
In 2022 IEEE/ACM Eighth Workshop on the LLVM Compiler Infrastructure in HPC (LLVM-HPC) (pp. 34-42). IEEE. doi:
10.25344/S4459B

Flang: Rasmussen, K., Rouson, D., George, N., Bonachea, D., Kadhem, H., & Friesen, B. (2022) "Aaqile Acceleration of LLVM Flang
Support for Fortran 2018 Parallel Programming", Research Poster at the International Conference for High Performance Computing,
Networking, Storage, and Analysis (SC22). doi: 10.25344/S4CP4S

Berkeley UPC: Chen, Bonachea, Duell, Husbands, lancu, Yelick,, "A Performance Analysis of the Berkeley UPC Compiler",
Proceedings of the International Conference on Supercomputing (ICS), ACM, June 23, 2003, 63--73, doi: 10.1145/782814.782825

UPC++: Bachan, Baden, Hofmeyr, Jacquelin, Kamil, Bonachea, Hargrove, Ahmed, "UPC++: A High-Performance Communication
Framework for Asynchronous Computation", 33rd IEEE International Parallel & Distributed Processing Symposium (IPDPS'19), May
2019, doi: 10.25344/S4V88H

https://doi.org/10.1145/2676870.2676876
https://doi.org/10.1145/2676870.2676876
https://doi.org/10.1145/2676870.2676876
https://doi.org/10.1145/2676870.2676876
https://dx.doi.org/10.25344/S4459B
https://dx.doi.org/10.25344/S4459B
https://escholarship.org/uc/item/01h204x9
https://escholarship.org/uc/item/01h204x9
https://dx.doi.org/10.25344/S4CP4S
https://escholarship.org/uc/item/91v1j2jw
https://dx.doi.org/10.1145/782814.782825
https://escholarship.org/uc/item/1gd059hj
https://escholarship.org/uc/item/1gd059hj
https://dx.doi.org/10.25344/S4V88H

Why not OpenCoarrays?

« Is hardwired to gfortran, e.g., many procedures manipulate gfortran-specific descriptors
« The interface implicitly assumes a MPI backend

* Only the MPI layer is maintained (GASNet & OpenSHMEM layers are legacy codes)

« Lacks full support for some parallel features (e.g., teams).

* Has a bus factor of ~1.

PRIF | BERKELEY LAB

11

https://en.wikipedia.org/wiki/Bus_factor

What is GASNet?

DOE Scientific Applications Main
development
- inP
Arkouda || FLeCSI |FlexFlow || ExaBiome || ExaGraph || NWChemEx || AMReX 'n Pagoda
Closely
co-developed
. Berkeley Fortran ECP projects
Chapel Legion UPC UPC++ coarrays SHMEM || ..
Closely

co-developed

GASNet-EX

Active Messages Collectives

Other interacting
components

Memory Technologies Network Hardware
(Host memory, GPUs, ...) (InfiniBand, Cray Aries, HPE Slingshot, Ethernet, Intel Omni-Path, ...)

PRIF | BERKELEY LAB 12

