
Parallel Runtime Interface for Fortran
A compiler and implementation independent interface for
supporting the parallel features of the Fortran language

https://go.lbl.gov/prif
December, 2023

https://go.lbl.gov/prif

PRIF | BERKELEY LAB

02
Parallel Features

03
High-level Design Overview

04
Next Steps

Outline

2

01
Motivation

PRIF | BERKELEY LAB

Motivation

3

What’s this for?

• Enable a compiler to target multiple
implementations of PRIF

– I.e. enable a vendor to supply their
own parallel runtime

• Enable a PRIF implementation to be used
by multiple compilers

• Isolate a compiler’s support of the parallel
features of the language from any particular
details of the communication infrastructure

• Our group’s experience with UPC and
OpenCoarrays has shown this to be
valuable

Compiled Fortran Code

Compiler Runtime

Parallel Runtime

Communication Library
(i.e. GASNet, MPI, SHMEM, etc.)

Network Hardware
(InfiniBand, Slingshot, Aries,

Omni-Path, Ethernet, …)

PRIF

PRIF | BERKELEY LAB

Parallel Features

4

• Intrinsic subroutines
– Collective subroutines: co_sum, co_max,

co_min, co_reduce, co_broadcast
– Atomic subroutines: atomic_add,

atomic_and, atomic_cas, atomic_define,
atomic_fetch_add, atomic_fetch_and,
atomic_fetch_or, atomic_fetch_xor,
atomic_or, atomic_ref, atomic_xor

– Other subroutines: event_query
• Types, kind type parameters, and values

– Intrinsic derived types: event_type,
team_type, lock_type, notify_type

– Atomic kind type parameters:
atomic_int_kind and
atomic_logical_kind

– Values: stat_failed_image,
stat_locked, stat_locked_other_image,
stat_stopped_image, stat_unlocked,
stat_unlocked_failed_image

• Statements
– Synchronization

• Explicit: sync all, sync images,
sync memory, sync team

• Implicit: allocate, deallocate,
stop, end, move_alloc

– Events: event post, event wait
– Notify: notify wait
– Error termination: error stop
– Locks: lock, unlock
– Failed images: fail image
– Teams: form team, change team
– Critical sections: critical, end critical

• Coarray Accesses ([...])
• Intrinsic functions: num_images, this_image,

lcobound, ucobound, team_number, get_team,
failed_images, stopped_images,
image_status, coshape, image_index

PRIF | BERKELEY LAB

PRIF Design Overview

5

Parallel Features Directly Translatable to Use of Fortran Library

call prif_this_image(image_index=me)

call prif_co_sum(&
 a, result_image=1_c_int)

call prif_put(&
 arr_coarray_handle, &
 int([1], c_intmax_t), &
 some_calc(), &
 int(storage_size(arr)/8, c_size_t), &
 c_loc(arr))

me = this_image()

call co_sum(a, result_image=1)

arr[1] = some_calc()

PRIF | BERKELEY LAB

Compiler

• Establish and initialize static coarrays prior to main
• Track corank of coarrays
• Track local coarrays for implicit deallocation when

exiting a scope
• Initialize a coarray with SOURCE= as part of

allocate-stmt
• Provide prif_critical_type coarrays for

critical-constructs
• Provide final subroutine for all derived types that are

finalizable or that have allocatable components that
appear in a coarray

• Variable allocation status tracking, including use of
MOVE_ALLOC

PRIF Implementation

• Track coarrays for implicit deallocation at
end-team-stmt

• Allocate and deallocate a coarray
• Reference a coindexed-object
• Team stack abstraction
• form-team-stmt, change-team-stmt, end-team-stmt
• Intrinsic functions related to parallel Fortran, like

num_images, etc
• Atomic subroutines
• Collective subroutines
• Synchronization statements
• Events, notify
• Locks
• critical-construct

PRIF Design Overview: Responsibilities

6

PRIF | BERKELEY LAB

Next Steps

• Submit PRIF Design Doc to LLVM-Project Repository
• Finish tests for proper behaviour of parallel features
• Finish implementation in Caffeine
• (Find help with) Integration into flang
• Track progress: https://github.com/BerkeleyLab/flang-testing-project/projects/7
• Solicit Feedback:

– Discourse Post
– Email: lbl-flang@lbl.gov
– Specification Working Draft: https://go.lbl.gov/prif
– We welcome issues and PRs at the above GitHub Repository

7

https://github.com/BerkeleyLab/flang-testing-project/projects/7
https://discourse.llvm.org/t/rfc-parallel-runtime-interface-for-fortran-prif/75801
mailto:lbl-flang@lbl.gov
https://go.lbl.gov/prif

PRIF | BERKELEY LAB

Questions?

8

● Email: lbl-flang@lbl.gov
● Specification Working Draft: https://go.lbl.gov/prif

mailto:lbl-flang@lbl.gov
https://go.lbl.gov/prif

PRIF | BERKELEY LAB

Acknowledgements

9

● This research is supported by the Exascale Computing Project (17-SC-20-SC), a
collaborative effort of the U.S. Department of Energy Office of Science and the National
Nuclear Security Administration

● This research used resources of the National Energy Research Scientific Computing
Center (NERSC), a U.S. Department of Energy Office of Science User Facility located at
Lawrence Berkeley National Laboratory, operated under Contract No.
DE-AC02-05CH11231

PRIF | BERKELEY LAB

Who We are

We have experience developing parallel runtimes, parallel applications, Flang frontend parallel
features, and parallel unit tests:

• OpenCoarrays: Fanfarillo, A., Burnus, T., Cardellini, V., Filippone, S., Nagle, D., & Rouson, D. (2014). “OpenCoarrays: open-source
transport layers supporting coarray Fortran compilers.” In Proceedings of the 8th International Conference on Partitioned Global
Address Space Programming Models (pp. 1-11). doi: 10.1145/2676870.2676876

• Caffeine: Rouson, D., & Bonachea, D. (2022). “Caffeine: CoArray Fortran Framework of Efficient Interfaces to Network Environments.”
In 2022 IEEE/ACM Eighth Workshop on the LLVM Compiler Infrastructure in HPC (LLVM-HPC) (pp. 34-42). IEEE. doi:
10.25344/S4459B

• Flang: Rasmussen, K., Rouson, D., George, N., Bonachea, D., Kadhem, H., & Friesen, B. (2022) "Agile Acceleration of LLVM Flang
Support for Fortran 2018 Parallel Programming", Research Poster at the International Conference for High Performance Computing,
Networking, Storage, and Analysis (SC22). doi: 10.25344/S4CP4S

• Berkeley UPC: Chen, Bonachea, Duell, Husbands, Iancu, Yelick,, "A Performance Analysis of the Berkeley UPC Compiler",
Proceedings of the International Conference on Supercomputing (ICS), ACM, June 23, 2003, 63--73, doi: 10.1145/782814.782825

• UPC++: Bachan, Baden, Hofmeyr, Jacquelin, Kamil, Bonachea, Hargrove, Ahmed, "UPC++: A High-Performance Communication
Framework for Asynchronous Computation", 33rd IEEE International Parallel & Distributed Processing Symposium (IPDPS'19), May
2019, doi: 10.25344/S4V88H

10

https://doi.org/10.1145/2676870.2676876
https://doi.org/10.1145/2676870.2676876
https://doi.org/10.1145/2676870.2676876
https://doi.org/10.1145/2676870.2676876
https://dx.doi.org/10.25344/S4459B
https://dx.doi.org/10.25344/S4459B
https://escholarship.org/uc/item/01h204x9
https://escholarship.org/uc/item/01h204x9
https://dx.doi.org/10.25344/S4CP4S
https://escholarship.org/uc/item/91v1j2jw
https://dx.doi.org/10.1145/782814.782825
https://escholarship.org/uc/item/1gd059hj
https://escholarship.org/uc/item/1gd059hj
https://dx.doi.org/10.25344/S4V88H

PRIF | BERKELEY LAB

Why not OpenCoarrays?

• Is hardwired to gfortran, e.g., many procedures manipulate gfortran-specific descriptors
• The interface implicitly assumes a MPI backend
• Only the MPI layer is maintained (GASNet & OpenSHMEM layers are legacy codes)
• Lacks full support for some parallel features (e.g., teams).
• Has a bus factor of ~1.

11

https://en.wikipedia.org/wiki/Bus_factor

PRIF | BERKELEY LAB

What is GASNet?

12

